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This paper considers why mathematics is used in physics. It traces the use of mathe-

matics in physics through primary school, junior high school and senior high school in NSW, 

Australia, considering its role from the point of view of Systemic Functional Linguistics and 

Legitimation Code Theory. To understand the development of mathematics, two genres that 

play differing roles in the discipline of physics are introduced: ‘derivation’ and ‘quantifica-

tion’. Through an analysis using the concepts of semantic density and semantic gravity from 

Legitimation Code Theory, these genres are shown to aid physics in developing new knowl-

edge and linking its theory to the empirical world. This paper contributes to the growing body 

of research considering forms of knowledge in academic disciplines and the role of non-lin-

guistic semiotic resources in organizing this knowledge.

Keywords: mathematics; physics; semantic density; semantic gravity; genre; Systemic Func-

tional Linguistics; Legitimation Code Theory.
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1. Mathematics in Science

Mathematics is pervasive through many scientific disciplines. It is used in both schooling 

and research, and it forms part of the high stakes texts students read to learn science and 

those they write for assessment. But why is it used in science? This question has come to 

prominence from a recent concern in educational linguistics and social realist sociology with 

the structure of knowledge in academic disciplines (Christie & Martin, 2007; Christie & Maton, 

2011). Various studies of science within the tradition of Systemic Functional Linguistics (SFL) 

have shown that the natural sciences, along with academic discourse in general, are large-

ly uncommon sense and far removed from our everyday discourse (e.g. Martin & Veel, 1998; 

Lemke, 1990). The sciences tend to involve distinct sets of factual genres and use language to 

construe both large sequences of causality and deep taxonomies of composition and classi-

fication (Halliday & Martin, 1993; Martin & Rose, 2008). From the viewpoint of Bernstein’s code 

theory, they are characterized by ‘hierarchical knowledge structures’ that attempt to create 

very general propositions and theories, integrating knowledge to account for an expanding 

range of different phenomena (Bernstein, 1999: 162; see Martin & Maton, this issue). According 

to Legitimation Code Theory (Maton, 2014), the principles underlying these knowledge struc-

tures of science emphasize epistemic relations between knowledge and its object of study, 

and downplay social relations between knowledge and its author or subject. At the same 

time, one of the most salient features of scientific discourse is its heavy use of non-linguistic 

semiotic resources, in particular mathematics (Parodi, 2010). Mathematics organizes its mean-

ings in considerably different ways to language and thus offers a complementary system for 

construing the knowledge of science (O’Halloran, 2005).

The high use of mathematics and the distinctive structuring of scientific knowledge 

begs the question whether these two attributes are related. Does mathematics contribute 

to science’s ability to develop integrated and abstracted models of the natural world, and 

does it aid in linking these models to empirical studies of their object of study? If so, how 

does mathematics do this? This paper will consider these questions by tracing mathematics 

through schooling as it develops in physics, the natural science in which mathematics is most 

widely used (Parodi, 2010). It will follow mathematics as it shifts through primary (elementary) 

school, junior high school and senior high school, in New South Wales, Australia, to under-

stand the changing forms of mathematics and what this means for knowledge in physics.

Through schooling there is a distinct evolution in how mathematics is used. The changes 

across the years correlate with different roles mathematics plays in organizing the knowl-

edge of physics. In order to understand the impact these changes have on the knowledge 

of physics, the mathematics in use will be viewed from two complementary angles. First, a 

model of mathematics developed from Systemic Functional Linguistics (Doran, 2016) will be 

used to map changes in the types of mathematics and its uses in texts. These changes will be 

illustrated primarily in terms of the distinct mathematical genres deployed (types of text with 
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distinct structures and linguistic and mathematical configurations), as well as mathematics’ 

interaction with language. By using this model, a metalanguage for mathematics becomes 

available that allows description and understanding of various textual patterns. Second, to 

explore how these patterns organize the knowledge of physics, they will be interpreted us-

ing the Semantics dimension of Legitimation Code Theory (LCT) (Maton, 2014). Semantics is 

concerned with two main variables: semantic gravity, which explores the degree to which 

meanings are dependent on their context, and semantic density, which explores the degree 

of condensation of meaning in a practice (Maton 2014; see also Martin & Maton, this issue; 

Maton & Doran, this issue). Each of these will be developed in further detail as they become 

relevant in the paper. Utilizing these concepts from Semantics enables a nuanced under-

standing of how the various resources of mathematics allow physics to build integrated and 

generalized knowledge, while at the same time remaining in contact with its empirical object 

of study. Bringing the two approaches together provides a method for understanding the 

kinds of mathematics used in physics, why they are used, and what the payoff is for physics 

as a discipline.

To organize the paper, a section will be devoted to each of the primary, junior high and 

senior high sectors of schooling (as these are organized in the state of New South Wales in 

Australia). At each stage, the mathematics in use will be introduced through the SFL frame-

work of mathematics before being interpreted in terms of Semantics from LCT. This progres-

sion will develop an expanding understanding of the utility of mathematics. The final section 

will pull together the strands raised in each section to characterize physics as a whole when 

viewed from mathematics.

2. Development of Mathematics in Physics
2.1. Primary School

The late primary school years (ages ~10-12) are the first to introduce mathematics in the ser-

vice of physics1. At this stage, mathematics is not a prominent feature of the discourse; the 

physics covered depends more heavily on language and images to construe its knowledge. 

Nonetheless, the mathematics that is used gives a glimpse of how it will organize the knowl-

edge of physics in later stages. In order to contribute to the knowledge of physics, however, 

it first must be invested with technical meaning from physics. Text 1 shows an example of 

how this can take place, via mathematics’ interaction with language. In this text mathematics 

1	 In primary school in New South Wales, Australia, physics is not a stand-alone subject. Rather, it 
forms part of a core science syllabus that also includes other natural sciences such as chemistry, 
biology (Board of Studies NSW, 2012). From early primary school, mathematics is taught separately 
as a topic area independent of scientific concerns.
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is being used to introduce the relationship between force, mass and acceleration known as 

Newton’s Second Law.

TEXT 1
Primary school F=ma text (Farndon, 2003: 19)

FORCE EQUATION

The relationship between force (F), mass (m) and acceleration (a) is summed up in the equation:

This shows the force of an object depends on the combination of its mass and acceleration. 

This is why the impact of a slow-moving truck and a fast-moving bullet are equally devastating. 

Both have tremendous force—the truck because of its large mass, the bullet because of its huge 

acceleration. The equation can also be swapped:

This shows the acceleration goes up with the force but down with the mass.

The opening sentence of this text introduces three mathematical symbols, F, m and a. Each 

of these symbols are named using linguistic technicality: F is force, m is mass and a is acceler-

ation. By naming these symbols, the text is investing them with technical meaning from the 

field. By encoding the symbols with instances of technicality in language, the symbols and 

linguistic technicality in effect become synonymous. The result is that changes in meaning in 

one semiotic resource, whether language or mathematics, necessarily changes the meaning 

of the other. For example, when Text 1 specifies that the force of an object depends on the 

combination of its mass and acceleration, language is indicating an unspecified dependency 

between force, mass and acceleration. As F, m and a have been made synonymous with these 

terms, this dependency necessarily transfers to the mathematical symbols. Similarly, any 

meanings built around these symbols in mathematics automatically implicates language. In 

 the relationship between the three symbols is given more precisely, specifying the 

dependency mentioned in language. If we were to translate this equation into language, we 

would say that F is proportional to both m and a. This means crudely that as either of m or a 

increases, F does too at the same rate. Similarly, the other equation introduced, , 

indicates that a is inversely proportional to m, meaning that if a decreases m increases and 

vice-versa. As the sentence following this equation explains: This shows the acceleration goes 

up with the force but down with the mass. In this text, the meanings of each of force, mass 

and acceleration are now linked to the meanings of the others. This interaction between lan-

guage and mathematics is a vital first step for mathematics to contribute to the knowledge 

of physics. Before it can perform the functions it does in later years, it must be invested with 

meaning in the field of physics.
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Even at this early stage, Text 1 shows that full mathematical equations are used. Equa-

tions that are used link symbols through sets of relations such as addition (+), multiplication 

(×) and division (÷). In order to understand this, it is important to now pause briefly and discuss 

how equations work (i.e. how they link symbols and what type of structure they rely on the 

build their meanings). This will provide an initial insight into the utility of mathematics when 

compared to language, but will also give a point of departure for describing the expansion of 

mathematics in subsequent stages of physics.

Mathematics is organized through sets of relations that are both precise and indefinitely 

iterative (Doran, 2016). In SFL terms, they show a univariate structure (Halliday, 2015 [1965]). 

These relations include the arithmetic relations of addition (+), multiplication (×), division (÷) 

noted above. In the equation , for example, m and a are linked through multiplica-

tion (though the × is elided by convention). The ma relation is then linked to F through the 

equals sign =. In the other equation in Text 1, , F is related to m through division 

(/), with both equated to a. Through the combination of the arithmetic relations (+, ×, ÷, –) and 

the choice of the equals sign = (as opposed to, say, not-equal ≠, approximately equal ≈, larger 

than > etc.) another set of relations arise, namely that F is proportional to m and a, while a is 

inversely proportional to m. As Text 1 describes, this means that holding all other things equal, 

as m or a increases, F also increases, but as m increases a decreases. These two relations of 

proportionality and inverse-proportionality remain the same across both the equations given. 

In this sense, and convey the same relations using different equations.

For the field of physics, the mathematics thus sets up precise relations between symbols 

that hold across the entire field. Indeed, when the relations between these symbols change, 

a change in the field is also signified. For example, is applicable for classical ‘Newto-

nian’ mechanics—which, to put it crudely, involves the study of motion on a scale of size and 

speed comparable to that we experience in our everyday life. However, when moving to other 

fields of physics such as special relativity (concerning situations where speeds are close to 

the speed of light) and quantum mechanics (concerning the workings of very small things) the 

relations among these symbols are different. For each subfield of physics, relations specified 

in mathematics constitute one part of the knowledge of the field.

Something that works powerfully for mathematics as far as its role in physics is con-

cerned, is the possibility for indefinite iteration of symbols within equations. in-

volves a relatively small number of symbols (three: F, m and a), related by the equals sign = 

and multiplication. In primary school, equations do not expand much larger than this, but the 

nature of mathematics is such that each side of the equation could be expanded indefinitely. 

In later years physics involves equations such as: . In such equations 

large sets of symbols (in this case eleven) are related in a single equation. The effect of this is 

that large sets of technical relations can be distilled into small snapshots.
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As we have seen, even in this early stage, there is a give and take between language and 

mathematics in physics. Mathematics gains meaning by being encoded with technical mean-

ing from the field. At the same time it develops meaning by setting up novel and precise rela-

tions among symbols that have been given technical meaning.

To conceptualize this burgeoning of meaning, we can enact the concept of semantic 

density from LCT (Maton, 2014). Semantic density is concerned with the degree of condensa-

tion of meaning in an item. If an item has more meaning, it is said to have stronger semantic 

density (SD+); if it has less meaning it has weaker semantic density (SD–). A key metric for 

determining whether something has stronger or weaker semantic density is its degree of 

relationality (Maton & Doran, this issue): how many relations the item has with other items 

in a field. For example when introducing a term such as energy, it can be specified that it 

has subtypes of potential energy and kinetic energy. This sets up relations of classification 

between each of the terms, thus increasing their relationality and strengthening their se-

mantic density.

Viewed from this perspective, mathematics as used in primary school physics primarily 

works to increase the semantic density of physics—to build technical meaning. First, the in-

dividual symbols are invested with meaning from technicality in language, e.g. F is given the 

meanings of force. This strengthens the semantic density of the mathematical symbols. Be-

yond this, the symbols are developed in equations, such as in . These equations spec-

ify sets of relations between symbols, further strengthening their semantic density. Since 

these symbols are associated with linguistic technicality, this semantic density is transferred 

over to the linguistic realm as well. That is, the relations between F, m and a specified in the 

mathematics transfers back to the relations between their linguistic correlates, force, mass 

and acceleration. As these meanings constitute part of the field, this interplay between math-

ematics and language strengthens the semantic density of the field itself.

At primary school, then, mathematics works to extend the semantic density of the field 

of physics. As mentioned above mathematics is only rarely used at this level. Physics at this 

stage relies more heavily on language and image to construe its knowledge. It is when mov-

ing into junior high school that mathematics comes into its own as a crucial component of 

physics. Not only is it used to a much larger degree, but the mathematics begins to be devel-

oped in specifically mathematical genres. This allows mathematics to function considerably 

differently to the way it does in primary school.

2.2. Junior High School

Physics in junior high school (years 7-10, ages ~12-16) significantly increases its use of 

mathematics. While still relatively marginal in comparison to the use of language and 
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images, it takes on new forms that offer new possibilities for construing the knowledge 

of physics. The mathematics in junior high school presents opportunities to reach toward 

the empirical world through a genre that will be called the quantification. This new genre 

is the key mathematical innovation for this stage and builds upon the basis for knowledge 

development introduced in primary school to further enhance the possibilities for knowl-

edge building of physics. As in primary school, mathematical equations and symbols are 

introduced and named, and thereby invested with technical meaning, which increases the 

semantic density of the field. An example of this, again involving the equation , 

is shown in Text 2.

TEXT 2
Junior high school a=F/m text (Haire et al., 2000: 118)

Newton’s Second Law of Motion describes how the mass on an object affects the way that it 

moves when acted upon by one or more forces. In symbols, Newton’s second law can be ex-

pressed as:

where	 a = acceleration

	 F = the total force on the object

	 m = the mass of the object.

If the total force is measured in newtons (N) and the mass is measured in kilograms (kg), the 

acceleration can be determined in metres per second squared (m/s2). This formula describes 

the observation that larger masses accelerate less rapidly than smaller masses acted on by the 

same total force. It also describes how a particular object accelerates more rapidly when a larger 

total force is applied. When all of the forces on an object are balanced, the total force is zero. 

Newton’s second law is often expressed as .

Text 2 again encodes technical meaning in individual symbols: a is equated with acceleration, 

F with the total force on the object and m with the mass of the object. As well as this, the full 

equation is named as Newton’s second law. The text continues to build meaning into the 

symbols and equation in the final paragraph, strengthening their semantic density.

Moving further into the page in which Text 2 is situated, mathematics is again used. This 

time, however, the text is not concerned with condensing meaning into the symbolism, but 

with using the mathematics to calculate the acceleration of a space shuttle taking off, as 

shown in Text 3(a).
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TEXT 3(a)
Junior high school a=F/m quantification (Haire et al., 2000: 119)

Newton’s second law can be used to estimate the acceleration of the space shuttle at blast off:

In other words the space shuttle is gaining speed at the rate of only 3.2 m/s (or 11.5 km/h) each 

second.

Text 3(a) shows an example of a recurrent configuration of mathematics and language that 

occurs throughout physics—exemplifying the bi-modal genre of the quantification. Quan-

tifications aim to produce numerical results that measure a specific instance of the object 

of study (which for physics is the physical world) and have a relatively consistent structure 

along the lines of that shown below by Text 3(b). The initial language and opening mathemat-

ical equation  together realize a stage called the Situation. This stage orients the text 

to the situation it is calculating (in this case the acceleration of the space shuttle) as well as 

specifying the equation to be used. The following line, , realizes the stage 

Substitution. This involves the replacement of the symbols in the previous line (m and F) with 

numbers (7 000 000 and 2 200 000 with the N and kg giving the units of measurement of force 

and mass respectively, and upwards specifying the direction of the force). In the next line the 

mathematics provides the Numerical Result, =3.2 m/s2, completing the calculation. Finally, a 

stage I have named the Physical Conclusion reinterprets the Numerical Result linguistical-

ly, where it is related back to the acceleration of the space shuttle specified in the opening 

stage. The entire genre interprets a specific situation numerically and in doing so, relates the 

abstracted theory shown by the symbolic equation to a specific empirical situation.

The introduction of quantifications is the key innovation that distinguishes the role of 

mathematics in primary and junior high school physics. To understand the role of quantifica-

tions in physics, we can introduce a second concept from the Semantics dimension of LCT: se-

mantic gravity. Semantic gravity is concerned with the degree to which meanings are depen-

dent on their context. Stronger semantic gravity (SG+) indicates meanings are less dependent 

on their context, whereas weaker semantic gravity (SG–) indicates greater context-depen-

dence. Semantic gravity and semantic density are independent variables that allow an un-

derstanding of how meanings vary in their relations to other meanings and to their context.
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Mathematical equations that do not involve numbers are not tied to any particular physical 

context. , for example, describes an abstract set of relations that hold for a very large 

set of situations—essentially all physical situations that can occur in our everyday life. The 

equation does not, however, address any particular situation. It does not, for example, say 

how much force, acceleration or mass will occur at any particular situation, rather it simply 

shows their generalized relations. The equation, then, is characterized by relatively weak se-

mantic gravity.

On the other hand, the final equation in numerical form, , very precisely de-

scribes a specific situation2. The numerical form of the equation does not mention anything 

about the generalized relationships between force, acceleration and mass, but measures a 

specific instance of acceleration. It is thereby characterized by relatively strong semantic 

gravity. The quantification genre thus involves a shift from weaker to stronger semantic grav-

ity; it is a tool for gravitation—for strengthening semantic gravity (Maton, 2014: 129). This 

allows physics to keep in touch with its object of study.

In junior high school physics, mathematics continues to strengthen semantic density by 

specifying equations and condensing them with technical meaning from language. At the 

same time, mathematics’ role in quantifications allows physics to strengthen its semantic 

2	 In the text, the ‘a’ on the left side of the equation is elided. This is typical of mathematical texts 
where the left side (the Theme) has been specified in the previous equation (Doran, 2016).

Newton’s second law can be used to estimate 
the acceleration of the space shuttle at blast off:

Situation

Substitution

Numerical 
Result

In other words the space shuttle is gaining 
speed at the rate of only 3.2 m/s (or 11.5 km/h) 
each second.

Physical 
Conclusion

TEXT 3(b)
Genre structure of junior high school a=F/m quantification 
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gravity by reaching out to specific empirical situations. Both the use of quantifications and 

the encoding of technical meaning from language continues into senior high school. There is 

also a further innovation, discussed below, that highlights the increasing role of mathematics 

in building knowledge in physics.

2.3. Senior High School

Senior high school (years 11-12, ages ~16-18) physics continues the trend of increasing reli-

ance on mathematics. By this stage, mathematics is a crucial component of the high-stakes 

assessment in physics. Students must not only read mathematics as it is used in classrooms, 

textbooks and assessment, and in doing so, gain technical physical meaning, they must also 

produce mathematics as a means to solving physical problems. In senior high school, the 

forms of mathematics used in junior high school are consolidated, expanded and built upon. 

In terms of sheer quantity, there is an enormous increase in the number of equations intro-

duced. Text 4 shows a snapshot of slightly over a quarter of the forty-eight equations speci-

fied in the formula sheet of the final state-wide exam of high-school physics.

TEXT 4
Formula sheet for final senior high school physics exam (Board of Studies, Teaching & Educational Standards 
NSW, 2014: 42)
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Each of the equations in this formula sheet must be understood by students to be successful 

in assessment. Although the equations themselves are given, there is no explication of what 

they mean, to which situations they apply or how to use them. They are technical equations 

that students need to understand in relation to the broader field. These equations build a very 

large complex of relations among technical meanings. The increase in equations arguably 

accelerates in future years, with a larger part of the technical meaning of physics organized 

through the mathematics deployed in the field.

Complementing the increase in the use of mathematics, the complexity of quantifica-

tions also increases. In junior high school, it is typical for single quantifications to occur in 

isolation, but in senior high school it is common for larger strings of quantifications to occur 

that aim to produce a single result. Following Martin (2015 [1994]) these strings of quantifica-

tions comprise larger quantification complexes. Text 5 shows an example of this from a senior 

high school textbook. Each of the three quantifications is framed with dotted boxes.

TEXT 5
Senior high school quantification complex (De Jong et al. 1990: 249; dotted boxes added)

On the earth:

Loss of weight = 490 – 180 = 310 N. But there is no loss of mass!

On Mars:

The quantifications in this text all work toward achieving a single final result. The aim of the 

text is to determine the loss of weight of a girl moving from Earth to Mars. The final quanti-

fication in the bottom box calculates this as 310 N. The loss of weight is the weight on Mars 

subtracted from the weight on Earth (shown as 490 – 180 in the final quantification). In order 

to do this calculation, however, the text must first work through the weight on both Earth and 

Mars (shown by Wearth and WMars in the top two boxes). Using values given in the previous co-

text (not shown), calculating the weight on Earth and weight on Mars each require their own 

quantification. In sum, three quantifications are needed to achieve the final result.

The importance of quantification complexes such as the one in Text 5 is that they allow 

physics to calculate numerical results from relatively distant starting points. In single quan-

tifications numerical values must be available for every symbol other than the one being 

calculated. For example, in Text 3, discussed in relation to junior high school, the aim was to 
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calculate a (acceleration) from the equation . The numerical values of both F and m 

were known from the previous co-text, leaving only a to be determined. This allowed a to be 

calculated with a single quantification. In Text 5 from senior high school, on the other hand, 

calculation of the loss of weight required that both the weight on Earth and the weight on 

Mars be known. As indicated above, these were not specified in the text and so required calcu-

lation through other quantifications. Each of these quantifications used the formula: W=mg. 

The symbols m (mass) and g (gravity on earth or Mars) were both known from the previous 

co-text allowing the weight on both Mars and Earth to be calculated. So based on the previ-

ously differentiated knowledge of the mass and gravity on both Mars and Earth, a sequence 

of quantifications could be used to calculate the loss of weight.

With regard to the knowledge of physics, the advent of quantification complexes in se-

nior high school builds upon the role of single quantifications used in junior high school. 

Single quantifications allowed physics to reach from generalized theory to specific empirical 

situations. Based on single quantifications, however, empirical situations could be explored 

only if a relatively specific set of numerical knowledge was available. Quantification complex-

es, on the other hand, allow a larger range of possible starting points to be used to calculate 

specific situations. This allows knowledge that is further removed from the empirical object 

of study to be put to use. As the number of quantifications that can occur in a complex is in 

principle indefinite, this complexing provides a powerful tool for physics to reach toward its 

object of study from very distant starting points.

As well as the introduction of quantification complexes and a greater reliance on mathe-

matics, senior high school sees another use of mathematics come to prominence. New types 

of text appear that are concerned not with measuring specific empirical instances, but rather 

with developing new mathematical relations. Text 6(a) shows an example of this from a senior 

high school textbook.

TEXT 6
Senior high school derivation (Warren, 2000: 123)

Force is the time rate of change of momentum as stated by Newton!
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Situation

Reorganization

Symbolic Result

Force is the time rate of change of 
momentum as stated by Newton!

Physical 
Conclusion

As in quantifications, texts such as this are recurrent configurations of mathematics and lan-

guage that realize a distinct genre. We will call this genre a derivation. Derivations aim not to 

find a numerical result, but to produce a new symbolic equation. In doing so, they make ex-

plicit relations in the field that may not have previously been specified. Derivations have a rel-

atively consistent structure exemplified below by Text 6(b). The opening two lines provide the 

initial equations that by this stage of the text are technical and well-known to students. As 

in quantifications, they provide the initial Situation upon which the rest of the text is based. 

Following this, the two lines,  and  reorganize the equations given in 

the Situation in a stage called the Reorganization. In this case, the  of the second line is 

substituted for the a  of the first line, producing . The final line of mathematics 

gives the Symbolic Result, again in symbolic form. The Reorganization and Symbolic Result 

stages indicate the difference between quantifications and derivations. Whereas quantifi-

cations insert numbers after the Situation, derivations remain in symbolic form. Thus the 

derivation works to produce a new equation, which is then reinterpreted in language within 

the Physical Conclusion. The structure of this derivation is shown below in Text 6(b).

TEXT 6(b)
Structure of a senior high school derivation

The new equation developed in the derivation makes explicit relations between symbols im-

plied but not yet specified in the field. Derivations are thus deployed to deepen the technical 

knowledge of physics. They develop and specify new sets of relations that become part of 

the field. These new relations can in turn be used in quantifications to extend the range of 

empirical situations accounted for by physics. Derivations are thus used not just to build new 

mathematical relations, but also to contribute to the development of new linguistic tech-

nicality. Text 7, which follows immediately after the excerpt shown in Text 6, provides an 

example of this.
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Text 7 begins with another short derivation. The opening equation  is taken from 

the Result of the previous equation. This is then reorganized to produce the final Result 

shown in the box: . Crucially for our discussion, the final Physical Conclusion 

reinterprets this Result in language, and in doing so, introduces a new piece of linguistic tech-

nicality, Impulse. Impulse is used to name one of the relations developed in the derivation 

, and is immediately elaborated linguistically in relation to other technical terms (i.e. 

change in momentum and force). The derivations used in Texts 6 and 7 have not only devel-

oped new relations within language but also engendered new linguistic technicality.

Derivations develop new equations by making relations which are otherwise implied in 

the field explicit. With the growth of technical symbols and equations, a large combinatori-

al potential arises. Each symbol carries around a large set of implied relations that can be 

brought to bear in any particular situation. For example, as discussed throughout, the equa-

tion  specifies relations between F, m and a. These relations remain even when one 

of the symbols is mentioned without the others, such as for F in  (Ek is glossed as kinetic 

energy, s is displacement). These two equations, and , set up relations between 

F and ma, and F and  respectively. As both sets of relations hold at the same time, relations 

between ma and  can also be specified as , or rearranged, . Derivations 

bring implicit relations between symbols into actuality.

We can again interpret this in terms of the LCT dimension of Semantics. Derivations are 

tools that make explicit new relations, and lay a platform for the introduction of new linguis-

tic technicality. In this way, they work to build meaning in the field. Whereas in earlier years, 

TEXT 7
Impulse derivation (Warren, 2000: 123; boxes in original)

IMPULSE

As we have just seen, we can write Newton’s Second Law as:

Rearranging this equation we can write:

Impulse  is equal to the change in momentum of the 

object upon which the force is applied.
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mathematics tends to encode technicality developed in language, in senior high school der-

ivations build relations which have not yet been specified. Derivations thus strengthen the 

semantic density of the field; that is, they are a tool for epistemological condensation (Maton, 

2014; Maton & Doran, this issue). This condensation role is particularly powerful. It allows 

mathematics to make explicit relations not previously known and to push into the new areas, 

thereby expanding the horizons of knowledge. When used in conjunction with quantifica-

tions, this new knowledge can be tested to see how usefully it construes the empirical world.

Based on this understanding of derivations, we can now review them in relation to the 

increasing use of mathematics, and its relation to language. As we saw in primary school (and 

continued through junior and senior high school), language initially works to invest mathe-

matics with technical meaning of physics. Drawing on this investment, derivations can then 

produce new relations which have not previously been made explicit. The relations in math-

ematics, and the symbols involved in them, can then be named in language. This transfers 

the meanings developed in mathematics back to language, which can in turn utilize its own 

ways of meaning- making. By handing meaning back and forth in this way, mathematics and 

language work in tandem to considerably strengthen the semantic density of the field.

3. Mathematics in the Knowledge Structure of Physics

The survey of mathematics in physics schooling undertaken here reveals its powerful utility. 

Through its interaction with language, each symbol can garner technical meaning, which 

can then be related to an indefinite number of symbols in a single snapshot. When used in 

derivations, physics can employ the large combinatory potential of mathematics to bring 

together relations in the field that have not yet been specified, and in doing so develop new 

knowledge in the field. When used in quantifications, mathematics can use these relations 

to account for specific instances in the real world. This opens the possibility for theory to be 

tested against empirical data and the physical world to be predicted.

In LCT terms, the mathematics used in physics is a tool for both condensation (strength-

ening semantic density) and gravitation (strengthening semantic gravity). This allows mean-

ings to be related and proliferated in a large number of combinations, while maintaining the 

capacity to connect with the empirical world. Without the strong potential for condensation, 

technical meanings would have a limited possibility for combination, meaning they would 

be tied to their contexts and become segmentalized. Physics would thus lose the potential 

to develop generalizable theories that account for a broad range of phenomena. In contrast, 

without the possibility for gravitation, physics would have no capacity to reconnect with 

its object of study; there would be no counter-balance to ensure the proliferation of theory 

maintains relevance in the study of the physical world. The condensation and gravitation 

shown by mathematics arise from the two genres discussed in this paper. On the one hand, 
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derivations strengthen the semantic density of both individual symbols and the field. The 

semantic density developed in mathematics can be condensed into language and vice versa, 

allowing each semiotic resource to utilize its own meaning-making resources. Mathematics 

thus provides a platform for sciences’ hierarchical knowledge structure by incorporating a 

tool for creating general propositions and theories, and integrating knowledge across a range 

of phenomena (Bernstein, 1999). On the other hand, quantifications strengthen the semantic 

gravity of a text and give physics the ability to link abstracted theory to specific instances. 

This expanded semantic range gives an avenue for physics to strengthen its epistemic rela-

tions between its knowledge and its object of study (Maton, 2014). Through mathematics, 

theory can be tested by data, and data can be predicted by theory.

So we can now return to the original question: why is mathematics used in science? Math-

ematics is used because it provides tools for both theoretical development and for bringing 

theory to bear on data. It is thus an instrument for expanding the frontiers of knowledge and 

for keeping that knowledge in touch with the empirical world.
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